Contingency Tables

Table 1: Data for applicant entrance for 6 departments
Department Male.Yes Male.No Female.Yes Female.No
1 512 313 89 19
2 353 207 17 8
3 120 205 202 391
4 138 279 131 244
5 53 138 94 299
6 22 351 24 317
Department Male.Yes Male.No Female.Yes Female.No OR se Conf.lwr Conf.Upr
1 512 313 89 19 0.3492120 0.2627081 -0.1656958 0.8641199
2 353 207 17 8 0.8025007 0.4375926 -0.0551808 1.6601823
3 120 205 202 391 1.1330596 0.1439424 0.8509325 1.4151868
4 138 279 131 244 0.9212838 0.1502084 0.6268753 1.2156922
5 53 138 94 299 1.2216312 0.2002426 0.8291558 1.6141066
6 22 351 24 317 0.8278727 0.3051635 0.2297522 1.4259933
[1] 1.71585 1.96631

    Breslow-Day test on Homogeneity of Odds Ratios

data:  dta
X-squared = 19.938, df = 5, p-value = 0.001283

    Cochran-Mantel-Haenszel Chi-square Test

data:  dta
CMH statistic = 1.52460, df = 1.00000, p-value = 0.21692, MH
Estimate = 0.90470, Pooled Odd Ratio = 1.84110, Odd Ratio of level
1 = 0.34921, Odd Ratio of level 2 = 0.80250, Odd Ratio of level 3
= 1.13310, Odd Ratio of level 4 = 0.92128, Odd Ratio of level 5 =
1.22160, Odd Ratio of level 6 = 0.82787

Based on the Breslow Day test we reject the null hypothesis that the odds ratios are equal to 1. The CMH test fails to reject that gender and entrance are independent.