Matrix Regression
[,1] [,2]
[1,] 11.675350 22.16815
[2,] 11.164364 18.89734
[3,] 12.400876 20.94524
[4,] 10.357397 21.56407
[5,] 10.109067 18.25317
[6,] 10.444637 19.84917
[7,] 10.451464 21.36056
[8,] 8.763568 19.40245
[9,] 8.923162 22.68341
[10,] 7.600346 18.09957
[1] 11.675350 11.164364 12.400876 10.357397 10.109067 10.444637 10.451464
[8] 8.763568 8.923162 7.600346
b x
[1,] 1 22.16815
[2,] 1 18.89734
[3,] 1 20.94524
[4,] 1 21.56407
[5,] 1 18.25317
[6,] 1 19.84917
[7,] 1 21.36056
[8,] 1 19.40245
[9,] 1 22.68341
[10,] 1 18.09957
[,1]
b 4.0586986
x 0.3016549
Call:
lm(formula = dta[, 1] ~ dta[, 2])
Coefficients:
(Intercept) dta[, 2]
4.0587 0.3017
[1] 0.2401398 0.1835194 0.1159607 0.1634227 0.2760978 0.1092077 0.1443377
[8] 0.1348034 0.3292979 0.3032130
[1] 0.2401398 0.1835194 0.1159607 0.1634227 0.2760978 0.1092077 0.1443377
[8] 0.1348034 0.3292979 0.3032130
1 2 3 4 5 6 7
0.2401398 0.1835194 0.1159607 0.1634227 0.2760978 0.1092077 0.1443377
8 9 10
0.1348034 0.3292979 0.3032130
[,1]
[1,] 10.745830
[2,] 9.759172
[3,] 10.376933
[4,] 10.563605
[5,] 9.564856
[6,] 10.046298
[7,] 10.502215
[8,] 9.911541
[9,] 10.901259
[10,] 9.518521
1 2 3 4 5 6 7
10.745830 9.759172 10.376933 10.563605 9.564856 10.046298 10.502215
8 9 10
9.911541 10.901259 9.518521
b x
5.90855 0.28989
[1] -9.566442 17.683839
[1] -0.3668327 0.9701424
2.5 % 97.5 %
(Intercept) -9.5664418 17.6838390
dta[, 2] -0.3668327 0.9701424
[1] 0.1192158
[1] 0.009117763
Call:
lm(formula = dta[, 1] ~ dta[, 2])
Residuals:
Min 1Q Median 3Q Max
-1.9781 -0.9125 0.1738 0.8332 2.0239
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0587 5.9085 0.687 0.512
dta[, 2] 0.3017 0.2899 1.041 0.328
Residual standard error: 1.429 on 8 degrees of freedom
Multiple R-squared: 0.1192, Adjusted R-squared: 0.009118
F-statistic: 1.083 on 1 and 8 DF, p-value: 0.3285