Kmeans Clustering
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
Median :5.800 Median :3.000 Median :4.350 Median :1.300
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
Species
setosa :50
versicolor:50
virginica :50
## Kmeans requires you to predetermine the number of clusters
mdl = kmeans(flower[, 1:4], centers = 3)
flower$cluster = mdl$cluster
## plot kmeans for a few of the variable combinations
par(mfrow = c(2, 2))
plot(x = flower$Sepal.Length, y = flower$Sepal.Width, col = factor(flower$Species), main = "Actual")
plot(x = flower$Sepal.Length, y = flower$Sepal.Width, col = factor(flower$cluster), main = "Model")
plot(x = flower$Petal.Length, y = flower$Petal.Width, col = factor(flower$Species), main = "Actual")
plot(x = flower$Petal.Length, y = flower$Petal.Width, col = factor(flower$cluster), main = "Model")
Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439
Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000